If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x^2+36x=0
a = 63; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·63·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*63}=\frac{-72}{126} =-4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*63}=\frac{0}{126} =0 $
| 80+6x=2x | | 14+5x=12-21 | | 3x-7+9x+31=180 | | 2(2x-4)=2(3x-6) | | 7=3x+3-4x | | v-594=99 | | -2+-2x=-14 | | 6x-8=43 | | 20-3m=-4 | | x=5(90-x)-30 | | 70=n+55 | | h-94=159 | | 2x+80=116 | | -4x=14-2 | | 3x+-2x-1=7 | | 47-x=278 | | -3x=24-6 | | 1/3(18x-6)=5x+1 | | (4)-2y=6 | | 5^7x+18=25 | | (6x+14)+(3x+29)=95 | | -66=-8x-3x | | 35=-20+x | | -3(x-5)=-2(5-4x) | | x=0.57 | | 22(9-x)+5x=266 | | 2(j-7)=6 | | -13/4m+25=9/4m+27/2 | | 6y=0.1-0.005 | | 6+2+x=3x+2 | | –p/4–16=–13 | | 7m+3+8m-18+90=180 |